Skip to contents

Generate Hex Plot of a SpatialExperiment containing UMI counts

Usage

plot_umi_count(
  spe,
  palette = "Mako",
  transform_scale = NULL,
  sample_id = "sample01",
  image_id = "lowres",
  reverse_palette = FALSE,
  zoom = TRUE,
  show_image = FALSE,
  background = NULL,
  offset_rotation = FALSE,
  spot_size = 1,
  limits = NULL,
  smooth = FALSE,
  smoothing_factor = 1.5,
  title_size = 30,
  title = NULL,
  font_size = 15,
  legend_size = 20,
  density = TRUE,
  save = FALSE,
  path = NULL,
  png_width = 1500,
  png_height = 750,
  show_legend = TRUE
)

Arguments

spe

deconvolution result in Form of a SpatialExperiment

palette

colorspace palette (sequential)

transform_scale

data transform_scaleation to use, "log"

sample_id

sample id to plot, default: "sample01"

image_id

which image to plot, default: "lowres"

reverse_palette

reverse color palette

zoom

zoom to the available spots

show_image

logical, wether to display the image, default = TRUE

background

custom background color

offset_rotation

correct hex orientation for rotated visium image

spot_size

increase (>1) or decrease (<1) the hex size

limits

vector of color scale limits

smooth

whether to smooth the plot

smoothing_factor

kernel size factor (multiples of spot distance)

title_size

font size of title

title

set a custom title

font_size

font size of legend

legend_size

legend size in points

density

whether to display a density distribution next to the spatial plot

save

set TRUE to save plot

path

specify directory to save plot, if NULL: saving at ~/spacedeconv

png_width

when saving, png width in px

png_height

when saving, png height in px

show_legend

whether to show the legend

Value

plot of cell type fractions

Examples

data("spatial_data_3")
deconv <- spacedeconv::deconvolute(spatial_data_3, method = "estimate")
#> ── spacedeconv ─────────────────────────────────────────────────────────────────
#>  testing parameter
#>  parameter OK [44ms]
#> 
#> 
#> 
#> ── Spatial 
#> Assays: "counts"
#> Genes: 36591
#> → without expression: 13039 (35.63%)
#> Spots: 1322
#> Spots under tissue: 1322 (100%)
#> Median Genes Per Spot: 3863.5
#> → without expression: 5 (0.38%)
#> Umi count range: 0 - 61586
#> Spots with UMI count below 500: 137 (0.37%)
#>  Rownames set
#>  Colnames set
#>  deconvoluting
#> 
#> >>> Running estimate
#> [1] "Merged dataset includes 9969 genes (443 mismatched)."
#> [1] "1 gene set: StromalSignature  overlap= 136"
#> [1] "2 gene set: ImmuneSignature  overlap= 140"
#>  finished [11.7s]
#> 
plot_umi_count(deconv)